EYES IN SCIENCE

MARIA CHIARA GELMI

MD, PHD CANDIDATE AT LEIDEN UNIVERSITY MEDICAL CENTER,

LEIDEN, THE NETHERLANDS

QUIZ TIME!

QUIZ TIME!

HOW DOES THE EYE WORK?

CORNEA

FUNCTIONS:

- I. Physical barrier vs exterior
- 2. Transparent \rightarrow allows light to pass through
- 3. Refracts / bends light \rightarrow focuses light

The cornea acts like the anterior lens of a camera

IRIS

FUNCTION:

- I. Eye colour
- 2. Controls the amount of light that enters the eye

The iris acts like the aperture / shutter of a camera

LENS

FUNCTION:

- I. Changes shape and thickness to focus light rays
- 2. Transparent \rightarrow allows light to pass through

RETINA

FUNCTION:

- I. Converts light into electrical signals
- 2. It creates an upside-down image

The retina acts like the film / image sensor of a camera

OPTIC NERVE

FUNCTION:

- I. Collects visual information from all the parts of the retina
- 2. Acts like a wire to transport electrical information

BRAIN / VISUAL CORTEX

FUNCTION:

- I. Receives the electrical information from the optic nerve and optic tract
- 2. Processes the electrical information \rightarrow creates the image the right way up

The brain acts like the a processor

MYOPIA / SHORT-SIGHTEDNESS

The eyeball is LONGER than normal \rightarrow focus in front of the retina \rightarrow DISTANT objects are blurry

https://www.asiapacificeyecentre.com.sg/myopia/

HYPEROPIA / FAR-SIGHTEDNESS

The eyeball is SHORTER than normal \rightarrow focus behind the retina \rightarrow NEAR objects are blurry

https://www.asiapacificeyecentre.com.sg/myopia/

ASTIGMATISM

The cornea has a different CURVATURE \rightarrow multiple focal points \rightarrow image is blurry, glare/halos around lights

https://www.jameswoodeyecare.co.uk/astigmatism/

CATARACT

- The lens becomes CLOUDY \rightarrow
 - No clear image
 - Halos around lights
- Usually age-related

https://eyenj.com/cataracts-glen-rock/

MACULAR DEGENERATION

MACULA:

- Most important part of the retina
- Highest density of cone photoreceptors
- Part of the retina for well-defined, central colour vision

Accumulation of EXTRA MATERIAL in the macula ➢ loss of CENTRAL VISION
➢ DISTORTED LINES

MACULAR DEGENERATION:

- Accumulation of EXTRA MATERIAL in the macula
 - Ioss of CENTRALVISION
 - DISTORTED LINES
- Age-related

PHOTORECEPTORS

ROD photoceptors:

- Night-time vision (scotopic)
- No colour vision

CONE photoceptors:

- Day-time vision (mesopic)
 - Colour vision: sensitive to different wavelengths \rightarrow different colours:
 - L: long wavelength (~560-570 nm) \rightarrow red
 - M: medium wavelength (~530-540 nm) \rightarrow green
 - S: short wavelength (~420-440 nm) \rightarrow blue

http://www.handprint.com/HP/WCL/color1.html

ROD PHOTORECEPTORS: RETINITIS PIGMENTOSA

Damage / death of ROD photoreceptors:

- > Night blindness
- Tunnel vision

NORMALVISION

TUNNEL VISION

CONE PHOTOREPECTOR: COLOUR VISION DEFICIENCIES

Cone	Colour	Missing cone	Mutated cone	Axis	Visual acuity
L-M-S	All colours	Complete achromatopsia	Incomplete achromatopsia	All colours	Low
L	Red	Protanopia	Protanomay	Red-green	Normal
Μ	Green	Deuteranopia	Deuteranomaly	Red-green	Normal
S	Blue	Tritanopia	Tritanomaly	Blue-yellow	Normal

http://www.handprint.com/HP/WCL/color1.html

Cone	Colour	Missing cone	Mutated cone	Axis	Visual acuity	
L-M-S	All colours	Complete achromatopsia	Incomplete achromatopsia	All colours	Low	

Tondo Doni, Michelangelo, Galleria degli Uffizi, Firenze

Achromatopsia

Cone	Colour	Missing cone	Mutated cone	Axis	Visual acuity
L	Red	Protanopia	Protanomaly	Red-green	Normal

Tondo Doni, Michelangelo, Galleria degli Uffizi, Firenze

Protanopia L (red) cone dysfunction

Cone	Colour	Missing cone	Mutated cone	Axis	Visual acuity
Μ	Green	Deuteranopia	Deuteranomaly	Red-green	Normal

Tondo Doni, Michelangelo, Galleria degli Uffizi, Firenze

Deuteranopia M (green) cone dysfunction

Cone	Colour	Missing cone	Mutated cone	Axis	Visual acuity
S	Blue	Tritanopia	Tritanomaly	Blue-yellow	Normal

Tondo Doni, Michelangelo, Galleria degli Uffizi, Firenze

Tritanopia S (blue) cone dysfunction

ACTIVITY: EXAMPLE OF A CLINICAL TRIAL

I. Pick a topic

- 2. How would you approach this problem?
- 3. What steps do we need to take?
- 4. What people do we need?

Topics:

- Refractive errors:
 - New type of lens
 - World-wide distribution
- Cataract:
 - Compare two surgical instruments
 - Compare two antibiotic eye drops
- Macular degeneration
 - New type of visual aid
 - New type of therapy
- Retinitis pigmentosa:
 - New type of visual aid
 - New type of gene therapy

